
NOTATION 

A, B, linear operators; u, dement of solution space U; f ,  exact reference data; f, reference data uncertainty; 6, 
value of reference data uncertainty; A -1, inverse operator; u(k)(r), k-th derivative of function u; rm, length of observation 
interval; ~0i(t) , polynomials of degree i ,  1 ; A*, B*, L*, operators conjugate to the operators A, B, L; J'g, discrepancy 
functional gradient; fin, descent step along the discrepancy antigradient for the n-th iteration; K(r - ~), kernel of integral 
equation; q(r), heat flux; T~(r), measured temperature inside body. 

LITERATURE CITED 

1. O.M. Alifanov, "Solution of an inverse problem in thermal conduction by iterative methods," Inzh.-Fiz. Zh., 26, 
No. 4, 682-689 (1974). 

2. O.M. Alifanov, "Determination of heat loads from a solution to a nonlinear inverse problem," Teplofiz. Vys. Temp., 
15, No. 3, 598-605 (1977). 

3. O.M. Alifanov and S. V. Rumyantsev, '% method of solving incorrectly formulated problems," Inzh.-Fiz. Zh., 34, 
No. 2, 328-331 (1978). 

4. B.M. Budak and F. P. Vasil'ev, Approximate Methods of Solving Optimum-Control Problems [in Russian], Issue 2, 
Moscow State Univ., Moscow (1969). 

5. V.M. Fridman, "Convergence of methods of steepest-descent type," Usp. Mat. Nauk, 177, No. 3, 201-208 (1973). 
6. M.Z. Nashed, "Steepest descent for singular linear operator equations," SIAM J. Numer. Anal., 7, No. 2, 358-362 

(1970). 

OPTIMAL CHOICE OF DESCENT STEPS IN GRADIENT METHODS 

OF SOLUTION OF INVERSE HEAT-CONDUCTION PROBLEMS 

E. A. Artyukhin and S. V. Rumyantsev UDC 536.24.02 

Modifications are proposed for the methods of steepest descent and conjugate gradients for the solution of multi- 
parameter inverse problems in heat conduction. 

In the solution of inverse heat-conduction problems it often becomes necessary to determine several independent 
functions and parameters at once. Such multiparameter problems arise in the solution of coefficient-type inverse problems, 
in the joint determination of the external thermal load and some thermophysical characteristics of the body, etc. An 
attempt to take the most complete account of the a priori information about the desired solution may also lead to such 
problems. 

In the solution of boundary-value inverse problems with one unknown (a function or a parameter) it has been found 
very effective to use algorithms based on gradient methods of minimization [ 1-3]. The use of these methods in a case when 
it is necessary to determine several independent variables is made more difficult by the fact that the descent step is chosen 
to be the same for all components of the direction of descent. Such a method of choosing the step frequently leads to very 
slow convergence of the gradient methods. The convergence may be speeded up considerably by choosing different descent 
steps for the different components of the gradient of the minimizing functional, i.e., to determine not one step but a vector 
of steps from the condition that the target functional has a minimum with respect to this vector at each iteration. 

We shall show how this method can be used for constructing gradient algorithms for the solution of boundary-value 
inverse problems in heat conduction when a priori information concerning the smoothness of the desired solution is available. 

A boundary-value inverse heat-conduction problem for bodies with constant thermophysical characteristics can be 
reduced to the solution of the first-order equation 

Au=f~, uEU, [6EF, (1) 
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where A is a linear continuous operator realizing the transformation U = L~. [0, "%1 -+ L,., [0, ~m] = F and specifying the 
variation of the thermal regime within the body as a function of  the unknown boundary condition f6 = F-+- ~, where f- 
is the exact fight_side (e.g., the temperature at some point  in the interior of the body) and f is the random noise in the 
measurement of f and II~L, = 5 ; r m is the length of the interval of  observation. The inverse operator  is usually unbounded.  

In [4] we proposed a method for taking account of  information concerning the smoothness of the desired function 
when it is known that the solution u(r) is continuous, together with all its derivatives up to some order k inclusive. We take 
account of the smoothness because the solution is sought in the transform of the integral operator L, i.e., in the form 

T t /* _ h 

= = i' i' + .  + 'w = Core + x ,  ?-,%, " ' "  , " "  , . , - "  , , , , , i  
*~. t h i = 1  i = I  

where g = {~, c: . . . . .  c,,}, if(z) = uIk)(% t~ C [0, Tin]; % (~) are polynomials of  degree (i - 1); c~ are the values of u(r) 
and its derivatives at the points t i [4]. 

Using such an approach, we replace the initial problem with the problem of  determining the vector g belonging to 
k 

the space G = L, [0, -r,~] x R h which has the norm :!gi]Z = Jlgl]~_.+ ~7 c ~ Thus, instead of Eq. (1) we must solve the 

equation :=~ 

Bg = f~, B = AL. (2) 

We introduce the discrepancy functional 

j 1 
. . . . . .  2 I j B g  - -  f d l ~ : .  

The expression for the gradient of  the discrepancy functional of Eq.  ( 3 )  was obtained in [ 4 ] ,  

J 'g  = {(L~ . . .  L ' A *  (Au- - :~ ) ,  (%, A* ( A u - -  f6))L,, . . . .  

('f~n, A* (Au- - f s ) ) z , }  = {(J'g)0, (J 'gh . . . . .  (J'g)J~}, 

where 

(3) 

( 4 )  

�9 , z(t) dt, x ~ t ~ ;  

L~z = {~ 
],i dr, 
t o  

Now we consider a gradient algorithm for minimizing the functional (3) in which we make a choice of the descent 
steps separately for each coordinate of the vector J 'g and we construct the process of successive approximation by the 
formula 

h 

g.+, = g~ - ~ ~:,(:'e,~)J. (5) 
] = 0  

This approach is a modification of the method of  steepest descent. The vector of  steps [~,~ = {~, ~ . . . . .  ~} will be 
chosen from the condit ion that we must have a minimum of  the discrepancy functional 

1 i 2 1 .~ 
IiBg,~+~ - -  fdlL~ = min ~ ilB (g,~ - -  [3J 'g, , ) -  f~i4Z~. (6) 

2 ~ 2 

Applying the operator  L to both parts of the sequence (5), we can obtain a sequence of approximations and a 
condit ion for the choice of the vector of  steps (6) in terms of  the initial problem (1): 

h 

un+ , = u,,- Z ~in(d'g'~)i % -- ~~176176 (7) 
i~l 

1 I 
2 I!Au~+~-- :d: 2, = rain - -  IIAu~ - -  ALpJ'g,~ - -  fdl2 = min J(u~+ O. (8) 

Setting the derivative of  J(u n + 1 ) with respect to/3~ equal to zero, we obtain 

h 

oJo~(.~+,) - v,..%L~ 21 A.~ --  h - -  ~-~ [~ d'e~)J A~: --  ~OACo ( S ' g ~ ) 0  = - -  ( A . , ,  --  h - -  ~,,~ ACo if'g.)o, 
/ ' = 1  2 
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k 

(J'g,d~ A%)L.. + ((J'gn)* A%, X 6~(J'g,di A~PJ)L, = O, i = 1 . . . . .  k, 
1 = i  

h 

o~o 
/ = 1  

ALo ( J' g,do)t., + 6 ~ IJALo ( d' g,do!12L, = O. 

From this we obtain a system of equations for determining fin : 
k 

~__~ 6i. (J' gn)J (A%, A~j)L ' + 6 ~ (ALo (J'g,do, A%)L. = 
1=1 

= (%, A* (Au,~-- [~))L, = (J'g,~)i, i = I . . . . .  k, (9) 

h 
k , 6 . (J  g,~)~ (A~j, ALo(J'g,,)o)L~ + 6~ [[ALo ~J'"t ~l,L.~'t2 = (A* (Au,~ - -  [~), 

/ = i  

Lo (J' g,do)L, = [t(J' g~)o[l[~ . 

The last equations in the relations (9) follow immediately from the expression for the gradient of  J'g. 

Thus, to obtain ~ at each iteration we must solve the system of linear algebraic equations (9). 

The system of equations (9) can be considerably simplified if we transform the system of functions' {%} into the 
system {~}, so that (Ach, Aq~j)L, = 6~j . Such a transformation can be carried out easily by applyinff the Hi lbe r t -Schmid t  

orthogonalization process to the system {A%}. This is entirely admissible, since the initial system {%} is linearly independent 
(r  are polynomials of  degree i - 1) and the heat-conduction equation with a boundary condition in the fol~m of any poly- 
nomial of  degree k has a nonzero solution. Consequently the system of functions {A%} will also be linearly independent. 
The required system of functions {~,} is obtained from the system {~i} by the formulas: 

i - - I  

% -  ~ (A%, Ach) ~t 
- -  t ~ t  ~ l ~ 1  

][Aw,-X (A%, 
l ~ l  

Obviously (A~i, A~j)c~ = 6~i, where ~ij is the Kronecker delta. This transformation can be carried out once before 

beginning the solution of the inverse problem. 

As we have already noted when we specified the operator L, the functions ~0 i are chosen rather arbitrarily, and there- 
fore, when we pass to the functions ~i,  all the arguments given earlier remain valid. 

For the transformed system of functions ~ }  the system of equations (9) takes the following form 

(J' g,~)~ 6~ + ~o (ALo (J' g~)o, A~)L, = (J'gn)~, 

i = 1  . . . . .  k, 
h 

6~ (J'g,~)J (A(pj, ALo (J' g,do)L, -t- 6~ [JALo (J' g,~)o!l~ = Ii(J' 'g~)o~!L..-'~ 
]=1 

(lO) 

Using the first k equations of  the system (10), we can eliminate from the last equation all the/3i n except ~3~ 

k 

[(Jg,~)J - -  6~ (A~pj, ALo (J g~)o)J  (A~j, ALo (J'gn)o)L, + 6,~[ o ( g~)o~/Z, ' O'IAL J '  r~ I , ,2 ,..,J = li(J g n ) o l L ,  . 
] = i  

From this we finally obtain 

o - -  

h 

- -  iX_ I (J g~)j (Arpj, ALo (J' gn)o);., If(J' g , , )o! l~ ,  ' - 

h 

]fALo (J' gn)o![~ - -  X (A~i' ALo (J'g~)0)~ 
]71  
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( A ~ ,  ALo(J'  g,)o)L, . 
i. - -  0 ~ - 1 - -  L ( S , g . ) ,  

The calculation of the gradient gn and the following approximation un+ ~ is carried out by using functions r 

The method of  conjugate gradients can be modified in an analogous manner. Since the descent steps are chosen 
individually for each component of the vector J 'gn'  it follows that a correction to the direction of  the descent can be made 
only for the first component. Therefore, the modified method of conjugate gradients can be written as follows: 

k 

�9 [3~(Jg~)J~J Lo( J'g,~)O-YL~ (11) 
i = l  

where p_~ ('v) --~ 0; Po = [3~ (J'g~)o; P,~ = [ 30 (g'g,~)0 + Y,~P,~-I; ~ and % are chosen from the condition 

J(u,,+l ) = rain 1 Z ~,~, -~- Au,~-- h - -  
]=1  

[3i (S,g,,)j A ~ j - -  [3~ (J'gn)o - -  yALop,,_,[I2 . (12) 

Setting the derivatives J(Un+ 1 ) with respect to 3~ and 7n equal to zero and taking account of  the fact that (A~i. A~j)L ~ 

= 6ij,  we obtain 

(J' gn)z [3n -,- [30 (A~i, ALo (J' g,do)z, + Y,~ ( A ~ ,  ALop~_I)L, = (J' gn)i, 

i = I ,  . . . ,  k; 
k 

[3n(J g,dJ (Atpj, ALo (J' g,do)L~ -t- ~n(ALo(J' g,do, Z i ~ -- 0 

i = l  

ALop,~_OI., -[- V,~ (ALo(J' g,~)o, ALop,~_i)L~ q- [l(J' g,~)0[i] , , 
k 

[3~ (J' g~)j (A~p j, ALop,~_,)L, -t- [3o (ALo (J' g~)o, 
l = l  

g~ ALo P,~-,)L, + Y,~ IIALop,~-~[f~, = (P'~-t' ( g,~)o)L, 

(13)  

From the system of equations (13) we readily obtain formulas for 3 n, 7 n. 

As in [ 1-3], the iterative process can be halted according to the discrepancy principle, i.e., on the basis of the 
condition 21 (u,) --.62 . 

The proposed modifications of the methods of  steepest descent and conjugate gradients may considerably increase 
the rate of  convergence with only small increases in the machine time used for each iteration. This conclusion is completely 
confirmed by the results of  calculations made for simulated examples. Some of  these are given in Fig. 1. 
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Fig. l. Reconstruction of  the heat flux density q, 10 6 W/m 2 : 
1) exact solution; 2) reconstructed heat-flux density from exact 
data; 3) the same for perturbed data; r = time, sec. 
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We considered the problem of reconstructing the heat-flux density on one of the boundaries of an unbounded plate 
in which the process of heat transfer is described by a linear homogeneous heat-conduction equation. The boundary 
condition of the second kind at the other boundary of the plate was known. As the input data, we used the variation of 
temperature as a function of time at an interior point of the plate. The solution of the initial heat-conduction problem 
was represented in integral form. Furthermore, using the method of [ 1 ], we passed to a system of linear algebraic equations, 
for whichwe constructed the above-described algorithms. The inverse problem was solved both for the exact input data and 
for input data perturbed by means of a random-number device. When the input-temperature perturbations were up to i0% 
of the maximum value, a halt by the discrepancy principle was obtained within three to eight iterations, depending on the 
variant involved. When a constant descent parameter was used in analogous simulated examples, 30 to 60 iterations were 
required. 

NOTATION 

A, B, L, linear operators; u, element of the solution space U; f-, exact initial data; f, error in the initial data; 6, 
value of the error in the initial data; A -1, inverse operator; u00(T), the k-th derivative of the function u; ~ci(O , polynomials 
of degree i - 1; A*, B*, L*, operators conjugate to the operators A, B, L; J(g), discrepancy functional; J'g, gradient of the 
discrepancy functional; 13in, depth of descent with respect to the i-th component of the antigradient of the discrepancy in 
the n-th iteration; vm, length of the observation interval. 
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REGULARIZING ALGORITHM FOR INVERTING THE 

ABEL EQUATION 

Yu. E. Voskoboinikov UDC 517.948.32 

The article presents a regularizing algorithm for solving the Abel equation using information on the statistics of 
the error of measurement of the right-hand side of the equation. 

Optical methods have found widespread application in the diagnostics of electric arcs, impulse discharges, gas and 
plasma streams. The characteristics measured in the course of these operations are correlated with the sought local param- 
eters of the object by the Abel equation [1]: 

R 

t" q~(r) rdr 
2 I, ( r ~ - - x 2 )  1/2 -- [(x) ,  xC[0, RI- (I)  

x 

Formally, the solution of ~0(r) can be determined by inverting the Abel equation, i.e., 

(2) 1 ( ['(x) dx rEiO, Rl, (r) - j" 
n (x~__ r2)~/2 , 

r 
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